

Standard Practice for Preparation of Sediment Samples for Chemical Analysis ¹

This standard is issued under the fixed designation D3976; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This practice describes standard procedures for preparation of test samples (including the removal of occluded water and moisture) of field samples collected from locations such as streams, rivers, ponds, lakes, and oceans.
- 1.2 These procedures are applicable to the determination of volatile, semivolatile, and nonvolatile constituents of sediments.
- 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific precautionary statement, see Note 3.

2. Referenced Documents

2.1 ASTM Standards:²

D596 Guide for Reporting Results of Analysis of Water

D1129 Terminology Relating to Water

D1192 Guide for Equipment for Sampling Water and Steam in Closed Conduits (Withdrawn 2003)³

D3370 Practices for Sampling Water from Closed Conduits

D4410 Terminology for Fluvial Sediment

3. Terminology

3.1 *Definitions*—For definitions of terms used in this practice, refer to Terminologies D1129 and D4410.

4. Summary of Practice

- 4.1 Samples collected (see Practice D3370 and Specification D1192) in the field are screened to remove foreign objects prior to homogenization for chemical examination and analysis. Large objects are mechanically removed and small ones are eliminated by sieving the sample through a 10-mesh (2 mm openings) sieve.
- 4.2 Wet, sieved samples are mixed for preliminary homogenization, then allowed to settle to remove most of the occluded water.
- 4.3 Moisture determinations are made on separate samples from those analyzed for volatile or semivolatile constituents.
- 4.4 Analyses for volatile constituents are made using wet, settled samples from which supernatant liquid has been removed by decantation. The results are corrected to those that would have been obtained on samples dried to constant weight at $105 \pm 2^{\circ}\text{C}$, on the basis of a moisture determination using a separate sample.
- 4.5 Analyses for semivolatile constituents (for example, mercury) are made on samples previously dried at a temperature found to be adequate for the purpose, and specified in the corresponding analytical procedure.
- 4.6 Analyses for nonvolatile constituents are made on samples previously dried to constant weight at $105 \pm 2^{\circ}$ C.
- 4.7 A flow diagram, outlining typical procedures, is shown in Fig. 1.

5. Significance and Use

- 5.1 The chemical analysis of sediments, collected from such locations as streams, rivers, ponds, lakes, and oceans can provide information of environmental significance.
- 5.2 Sediment samples are inherently heterogeneous in that they contain occluded water in varying and unpredictable amounts and may contain foreign objects or material not ordinarily considered as sediment, the inclusion of which would result in inaccurate analysis.
- 5.3 Standard methods for separating foreign objects to facilitate homogenization will minimize errors due to poor mixing and inclusion of extraneous material.
- 5.4 Standardized procedures for drying provide a means for reporting analytical values to a common dry weight basis.

¹ This practice is under the jurisdiction of ASTM Committee D19 on Water and is the direct responsibility of Subcommittee D19.07 on Sediments, Geomorphology, and Open-Channel Flow.

Current edition approved Jan. 1, 2015. Published January 2015. Originally approved in 1980. Last previous edition approved in 2010 as D3976-92 (2010). DOI: 10.1520/D3976-92R15.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website

³ The last approved version of this historical standard is referenced on www.astm.org.